티스토리 뷰
I Dropped Out of School to Create My Own Data Science Master’s — Here’s My Curriculum
Every single Machine Learning course on the internet, ranked by your reviews
If you want to learn Data Science, start with one of these programming classes
If you want to learn Data Science, take a few of these statistics classes
I ranked every Intro to Data Science course on the internet, based on thousands of data points
An overview of every Data Visualization course on the internet
점프 투 파이썬
코딩도장
파이썬으로 배우는 알고리즘 트레이딩
예제로 배우는 Python 프로그래밍
홍콩과기대 김성훈 교수
http://hunkim.github.io/ml/
https://www.youtube.com/user/hunkims/
GitHub Flow
https://goo.gl/t9K8gn
https://goo.gl/Ek35Zi
Python으로 Big Data 분석하기
https://www.flearning.net/courses/6
https://www.youtube.com/watch?v=nxSVZVVfMxM&list=PLWO_EXTnt3sPmlgCeHAiHwaAFwmmusGp6
Terry TaeWoong Um
https://www.youtube.com/user/TerryTaewoongUm/
Minsuk Heo 허민석
https://www.youtube.com/user/TheEasyoung
Machine Learning by Andrew Ng
https://www.coursera.org/learn/machine-learning
Coding The Matrix: Linear Algebra Through Computer Science Applications
http://codingthematrix.com/
http://cs.brown.edu/courses/cs053/current/lectures.htm
김대현 : 파이썬을 활용한 똑똑한 주식투자 (시스템 트레이딩) - PyCon APAC 2016
https://slackapi.github.io/python-slackclient/
http://cafe.naver.com/powertrading
김도형: 파이썬 데이터 분석 3종 세트 - statsmodels, scikit-learn, theano - PyCon APAC 2016
https://datascienceschool.net/
6 Books Every Data Scientist Should Keep Nearby
The Best Statistics Books Of All-Time
프레임 워크 비교 : Deeplearning4j, Torch, Theano, TensorFlow, Caffe, Paddle, MxNet, Keras 및 CNTK
http://kjcoder.tistory.com/category/TensorFlow_Python
https://www.codecademy.com/learn/learn-python
https://www.codeschool.com/courses/try-python
https://www.codeschool.com/courses/try-django
https://learnpythonthehardway.org/
SKIL CE (Skymind Intelligence Layer Community Edition)
Project Euler
NumPy Tutorial
https://docs.scipy.org/doc/numpy/user/quickstart.html
http://cs231n.github.io/python-numpy-tutorial/
Operation Research with Python Programming
Machine Learning from Scratch with Python
Top 10 IPython Notebook Tutorials for Data Science and Machine Learning
https://docs.scipy.org/doc/numpy/user/quickstart.html
http://cs231n.github.io/python-numpy-tutorial/
https://www.slideshare.net/PyData/introduction-to-numpy
From Python to Numpy
http://www.labri.fr/perso/nrougier/from-python-to-numpy/
https://github.com/rougier/from-python-to-numpy
Numpy Tutorial Part 1 – Introduction to Arrays
Numpy Tutorial Part 2 – Vital Functions for Data Analysis
101 NumPy Exercises for Data Analysis (Python)
Stanford CS231n Convolutional Neural Networks for Visual Recognition
http://cs231n.stanford.edu/
http://cs231n.github.io/
'Show' 카테고리의 다른 글
Ubuntu gcc g++ gdb 설치 (0) | 2018.04.02 |
---|---|
Mathematics Calculus (0) | 2018.03.23 |
Baby English (0) | 2018.03.18 |
Scala 강좌 (0) | 2018.03.18 |
Machine Learning on Quantopian Zipline (0) | 2018.03.17 |
- Total
- Today
- Yesterday
- 애드센스숨기기
- DotNetMagic
- java
- Automation
- autohotkey
- tagREADYSTATE
- READYSTATE_COMPLETE
- 애드센스감추기
- iTextSharp
- windows
- Phalanger
- c#
- Microsoft
- download.com
- Regular Expressions
- ScreenHunter
- 스크린캡쳐
- AdSense숨기기
- jre
- registry
- WinAutomation
- AxWebBrowser
- 유틸리티
- Sample Code
- iText
- Rollback Rx
- Service pack
- AdSense감추기
- .net framework
일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||
6 | 7 | 8 | 9 | 10 | 11 | 12 |
13 | 14 | 15 | 16 | 17 | 18 | 19 |
20 | 21 | 22 | 23 | 24 | 25 | 26 |
27 | 28 | 29 | 30 |